意昂4体育注册專家講座🧏♂️:可解釋性數據驅動故障診斷
報告時間🤴🏼:2024年12月27日(周五),14:00-15:30
報告地點:物流樓506
主 講 人: 陳宏田
報告摘要:
The increased complexity and intelligence of automation systems require the development of intelligent fault diagnosis (IFD) methodologies. By relying on the concept of a suspected space, this study develops explainable data-driven IFD approaches for nonlinear dynamic systems. More in detail, we parameterize nonlinear systems through a generalized kernel representation used for system modeling and the associated fault diagnosis. An important result obtained is a unified form of kernel representations, applicable to both unsupervised and supervised learning. More importantly, through a rigorous theoretical analysis we discover the existence of a bridge (i.e., a bijective mapping) between some supervised and unsupervised learning-based entities. Notably, the designed IFD approaches achieve the same performance by the use of this bridge. In order to have a better understanding of the results obtained, unsupervised and supervised neural networks are chosen as the learning tools to identify generalized kernel representations and design the IFD schemes; an invertible neural network is then employed to build the bridge between them. This report is a perspective talk, whose contribution lies in proposing and detailing the fundamental concepts for explainable intelligent learning methods, contributing to system modeling and data-driven IFD designs for nonlinear dynamic systems.
主講人簡介:
陳宏田,現為上海交通大學副教授、博士生導師,國家級高層次青年人才、瑪麗居裏學者、上海市優才攬蓄人才、上海市高層次人才、浦江學者。本碩畢業於南師大,博士畢業於南京航空航天大學🧘♂️。2019年至2023年為加拿大Alberta大學博士後🕴。主要研究方向為數據驅動技術👷🏿、可解釋人工智能等及其在高速列車、機器人、海陸空系統應用。目前為止🫷🏿,發表英文專著2部,Automatica與IEEE匯刊60余篇、授權與受理國家專利20余項🕵🏼。主持國際項目📲、國家級項目等10項。獲得中國自動化學會優秀博士論文獎、工信部創新特等獎⛪️, IEEE RCAE青年科學家獎等多項個人獎與團體獎🧏♂️。目前為IEEE Transactions on Instrumentation and Measurement、IEEE Transactions on Industrial Informatics♨️、Control Engineering Practice等多個國際期刊編委🧛🏿♀️。受邀作為組織主席😙,舉辦RCAE 2022-2024國際會議;並承擔多個大會程序主席、聯合主席等👳🏽♂️。